/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */ /* * GThumb * * Copyright (C) 2001, 2002 The Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Street #330, Boston, MA 02110-1301, USA. */ /* based upon file transupp.h from the libjpeg package, original copyright * note follows: * * transupp.h * * Copyright (C) 1997, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains declarations for image transformation routines and * other utility code used by the jpegtran sample application. These are * NOT part of the core JPEG library. But we keep these routines separate * from jpegtran.c to ease the task of maintaining jpegtran-like programs * that have other user interfaces. * * NOTE: all the routines declared here have very specific requirements * about when they are to be executed during the reading and writing of the * source and destination files. See the comments in transupp.c, or see * jpegtran.c for an example of correct usage. */ /* * Codes for supported types of image transformations. */ #ifdef HAVE_LIBJPEG #ifndef TRANSUPP_H #define TRANSUPP_H #include typedef enum { JXFORM_NONE, /* no transformation */ JXFORM_FLIP_H, /* horizontal flip */ JXFORM_FLIP_V, /* vertical flip */ JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */ JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */ JXFORM_ROT_90, /* 90-degree clockwise rotation */ JXFORM_ROT_180, /* 180-degree rotation */ JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */ } JXFORM_CODE; /* * Although rotating and flipping data expressed as DCT coefficients is not * hard, there is an asymmetry in the JPEG format specification for images * whose dimensions aren't multiples of the iMCU size. The right and bottom * image edges are padded out to the next iMCU boundary with junk data; but * no padding is possible at the top and left edges. If we were to flip * the whole image including the pad data, then pad garbage would become * visible at the top and/or left, and real pixels would disappear into the * pad margins --- perhaps permanently, since encoders & decoders may not * bother to preserve DCT blocks that appear to be completely outside the * nominal image area. So, we have to exclude any partial iMCUs from the * basic transformation. * * Transpose is the only transformation that can handle partial iMCUs at the * right and bottom edges completely cleanly. flip_h can flip partial iMCUs * at the bottom, but leaves any partial iMCUs at the right edge untouched. * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched. * The other transforms are defined as combinations of these basic transforms * and process edge blocks in a way that preserves the equivalence. * * The "trim" option causes untransformable partial iMCUs to be dropped; * this is not strictly lossless, but it usually gives the best-looking * result for odd-size images. Note that when this option is active, * the expected mathematical equivalences between the transforms may not hold. * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim * followed by -rot 180 -trim trims both edges.) * * We also offer a "force to grayscale" option, which simply discards the * chrominance channels of a YCbCr image. This is lossless in the sense that * the luminance channel is preserved exactly. It's not the same kind of * thing as the rotate/flip transformations, but it's convenient to handle it * as part of this package, mainly because the transformation routines have to * be aware of the option to know how many components to work on. */ typedef struct { /* Options: set by caller */ JXFORM_CODE transform; /* image transform operator */ boolean trim; /* if TRUE, trim partial MCUs as needed */ boolean force_grayscale; /* if TRUE, convert color image to grayscale */ /* Internal workspace: caller should not touch these */ int num_components; /* # of components in workspace */ jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */ } jpeg_transform_info; /* Request any required workspace */ void jtransform_request_workspace (j_decompress_ptr srcinfo, jpeg_transform_info *info); /* Adjust output image parameters */ jvirt_barray_ptr * jtransform_adjust_parameters (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info); /* Execute the actual transformation, if any */ void jtransform_execute_transformation (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info); /* * Support for copying optional markers from source to destination file. */ typedef enum { JCOPYOPT_NONE, /* copy no optional markers */ JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */ JCOPYOPT_ALL /* copy all optional markers */ } JCOPY_OPTION; #define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */ /* Setup decompression object to save desired markers in memory */ void jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option); /* Copy markers saved in the given source object to the destination object */ void jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JCOPY_OPTION option); #endif /* TRANSUPP_H */ #endif /* HAVE_LIBJPEG */