/* * Copyright (C) 2007 Red Hat, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301, USA. * * Authors: * Jonathan Blandford <jrb@redhat.com> * Matthias Clasen <mclasen@redhat.com> */ #include <time.h> #include <gtk/gtk.h> #include <math.h> #include "clock-sunpos.h" /* Calculated with the methods and figures from "Practical Astronomy With Your * Calculator, version 3" by Peter Duffet-Smith. */ /* Table 6. Details of the Sun's apparent matecorba at epoch 1990.0 */ #define EPOCH 2447891.5 /* days */ /* epoch 1990 */ #define UNIX_EPOCH 2440586.5 /* days */ /* epoch 1970 */ #define EPSILON_G 279.403303 /* degrees */ /* ecliptic longitude at epoch 1990.0 */ #define MU_G 282.768422 /* degrees */ /* ecliptic longitude at perigee */ #define ECCENTRICITY 0.016713 /* eccentricity of matecorba */ #define R_0 149598500 /* km */ /* semi-major axis */ #define THETA_0 0.533128 /* degrees */ /* angular diameter at r = r_0 */ #define MEAN_OBLIQUITY 23.440592 /* degrees */ /* mean obliquity of earth's axis at epoch 1990.0 */ #define NORMALIZE(x) \ while (x>360) x-=360; while (x<0) x+= 360; #define DEG_TO_RADS(x) \ (x * G_PI/180.0) #define RADS_TO_DEG(x) \ (x * 180.0/G_PI) /* Calculate number of days since 4713BC. */ static gdouble unix_time_to_julian_date (gint unix_time) { return UNIX_EPOCH + (double) unix_time / (60 * 60 * 24); } /* Finds an iterative solution for [ E - e sin (E) = M ] for values of e less than 0.1. Page 90 */ #define ERROR_ACCURACY 1e-6 /* radians */ static gdouble solve_keplers_equation (gdouble e, gdouble M) { gdouble d, E; /* start with an initial estimate */ E = M; d = E - e * sin (E) - M; while (ABS (d) > ERROR_ACCURACY) { E = E - (d / (1 - e * cos (E))); d = E - e * sin (E) - M; } return E; } /* convert the ecliptic longitude to right ascension and declination. Section 27. */ static void ecliptic_to_equatorial (gdouble lambda, gdouble beta, gdouble *ra, gdouble *dec) { gdouble cos_mo; gdouble sin_mo; g_assert (ra != NULL); g_assert (dec != NULL); sin_mo = sin (DEG_TO_RADS (MEAN_OBLIQUITY)); cos_mo = cos (DEG_TO_RADS (MEAN_OBLIQUITY)); *ra = atan2 (sin (lambda) * cos_mo - tan (beta) * sin_mo, cos (lambda)); *dec = asin (sin (beta) * cos_mo + cos (beta) * sin_mo * sin (lambda)); } /* calculate GST. Section 12 */ static gdouble greenwich_sidereal_time (gdouble unix_time) { gdouble u, JD, T, T0, UT; u = fmod (unix_time, 24 * 60 * 60); JD = unix_time_to_julian_date (unix_time - u); T = (JD - 2451545) / 36525; T0 = 6.697374558 + (2400.051336 * T) + (0.000025862 * T * T); T0 = fmod (T0, 24); UT = u / (60 * 60); T0 = T0 + UT * 1.002737909; T0 = fmod (T0, 24); return T0; } /* Calculate the position of the sun at a given time. pages 89-91 */ void sun_position (time_t unix_time, gdouble *lat, gdouble *lon) { gdouble jd, D, N, M, E, x, v, lambda; gdouble ra, dec; jd = unix_time_to_julian_date (unix_time); /* Calculate number of days since the epoch */ D = jd - EPOCH; N = D*360/365.242191; /* normalize to 0 - 360 degrees */ NORMALIZE (N); /* Step 4: */ M = N + EPSILON_G - MU_G; NORMALIZE (M); /* Step 5: convert to radians */ M = DEG_TO_RADS (M); /* Step 6: */ E = solve_keplers_equation (ECCENTRICITY, M); /* Step 7: */ x = sqrt ((1 + ECCENTRICITY)/(1 - ECCENTRICITY)) * tan (E/2); /* Step 8, 9 */ v = 2 * RADS_TO_DEG (atan (x)); NORMALIZE (v); /* Step 10 */ lambda = v + MU_G; NORMALIZE (lambda); /* convert the ecliptic longitude to right ascension and declination */ ecliptic_to_equatorial (DEG_TO_RADS (lambda), 0.0, &ra, &dec); ra = ra - (G_PI/12) * greenwich_sidereal_time (unix_time); ra = RADS_TO_DEG (ra); dec = RADS_TO_DEG (dec); NORMALIZE (ra); NORMALIZE (dec); *lat = dec; *lon = ra; } #if 0 int main (int argc, char *argv[]) { gint i; gint now; GTimeVal timeval; gdouble lat, lon; gtk_init (&argc, &argv); g_get_current_time (&timeval); now = timeval.tv_sec; for (i = 0; i < now; i += 15 * 60) { sun_position (i, &lat, &lon); g_print ("%d: %f %f\n", lat, lon); } return 0; } #endif