summaryrefslogtreecommitdiff
path: root/src/mp.h
diff options
context:
space:
mode:
authorPerberos <[email protected]>2011-11-08 13:50:37 -0300
committerPerberos <[email protected]>2011-11-08 13:50:37 -0300
commit2358ba4314dc6d757049bc4871ecf2922614b61b (patch)
tree12e52f491560916f0458c87b2d98ffa94500cb0f /src/mp.h
downloadmate-calc-2358ba4314dc6d757049bc4871ecf2922614b61b.tar.bz2
mate-calc-2358ba4314dc6d757049bc4871ecf2922614b61b.tar.xz
initial
Diffstat (limited to 'src/mp.h')
-rw-r--r--src/mp.h357
1 files changed, 357 insertions, 0 deletions
diff --git a/src/mp.h b/src/mp.h
new file mode 100644
index 0000000..d71111d
--- /dev/null
+++ b/src/mp.h
@@ -0,0 +1,357 @@
+
+/* Copyright (c) 1987-2008 Sun Microsystems, Inc. All Rights Reserved.
+ * Copyright (c) 2008-2009 Robert Ancell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
+ * 02111-1307, USA.
+ */
+
+/* This maths library is based on the MP multi-precision floating-point
+ * arithmetic package originally written in FORTRAN by Richard Brent,
+ * Computer Centre, Australian National University in the 1970's.
+ *
+ * It has been converted from FORTRAN into C using the freely available
+ * f2c translator, available via netlib on research.att.com.
+ *
+ * The subsequently converted C code has then been tidied up, mainly to
+ * remove any dependencies on the libI77 and libF77 support libraries.
+ *
+ * FOR A GENERAL DESCRIPTION OF THE PHILOSOPHY AND DESIGN OF MP,
+ * SEE - R. P. BRENT, A FORTRAN MULTIPLE-PRECISION ARITHMETIC
+ * PACKAGE, ACM TRANS. MATH. SOFTWARE 4 (MARCH 1978), 57-70.
+ * SOME ADDITIONAL DETAILS ARE GIVEN IN THE SAME ISSUE, 71-81.
+ * FOR DETAILS OF THE IMPLEMENTATION, CALLING SEQUENCES ETC. SEE
+ * THE MP USERS GUIDE.
+ */
+
+#ifndef MP_H
+#define MP_H
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <glib.h>
+
+/* Size of the multiple precision values */
+#define MP_SIZE 1000
+
+/* Base for numbers */
+#define MP_BASE 10000
+
+/* Object for a high precision floating point number representation
+ *
+ * x = sign * (MP_BASE^(exponent-1) + MP_BASE^(exponent-2) + ...)
+ */
+typedef struct
+{
+ /* Sign (+1, -1) or 0 for the value zero */
+ int sign, im_sign;
+
+ /* Exponent (to base MP_BASE) */
+ int exponent, im_exponent;
+
+ /* Normalized fraction */
+ int fraction[MP_SIZE], im_fraction[MP_SIZE];
+} MPNumber;
+
+typedef enum
+{
+ MP_RADIANS,
+ MP_DEGREES,
+ MP_GRADIANS
+} MPAngleUnit;
+
+/* Returns error string or NULL if no error */
+// FIXME: Global variable
+const char *mp_get_error(void);
+
+/* Clear any current error */
+void mp_clear_error(void);
+
+/* Returns:
+ * 0 if x == y
+ * <0 if x < y
+ * >0 if x > y
+ */
+int mp_compare_mp_to_mp(const MPNumber *x, const MPNumber *y);
+
+/* Return true if the value is x == 0 */
+bool mp_is_zero(const MPNumber *x);
+
+/* Return true if x < 0 */
+bool mp_is_negative(const MPNumber *x);
+
+/* Return true if x is integer */
+bool mp_is_integer(const MPNumber *x);
+
+/* Return true if x is a positive integer */
+bool mp_is_positive_integer(const MPNumber *x);
+
+/* Return true if x is a natural number (an integer ≥ 0) */
+bool mp_is_natural(const MPNumber *x);
+
+/* Return true if x has an imaginary component */
+bool mp_is_complex(const MPNumber *x);
+
+/* Return true if x == y */
+bool mp_is_equal(const MPNumber *x, const MPNumber *y);
+
+/* Return true if x ≥ y */
+bool mp_is_greater_equal(const MPNumber *x, const MPNumber *y);
+
+/* Return true if x > y */
+bool mp_is_greater_than(const MPNumber *x, const MPNumber *y);
+
+/* Return true if x ≤ y */
+bool mp_is_less_equal(const MPNumber *x, const MPNumber *y);
+
+/* Return true if x < y */
+bool mp_is_less_than(const MPNumber *x, const MPNumber *y);
+
+/* Sets z = |x| */
+void mp_abs(const MPNumber *x, MPNumber *z);
+
+/* Sets z = Arg(x) */
+void mp_arg(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
+
+/* Sets z = ‾̅x */
+void mp_conjugate(const MPNumber *x, MPNumber *z);
+
+/* Sets z = Re(x) */
+void mp_real_component(const MPNumber *x, MPNumber *z);
+
+/* Sets z = Im(x) */
+void mp_imaginary_component(const MPNumber *x, MPNumber *z);
+
+/* Sets z = −x */
+void mp_invert_sign(const MPNumber *x, MPNumber *z);
+
+/* Sets z = x + y */
+void mp_add(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z = x + y */
+void mp_add_integer(const MPNumber *x, int64_t y, MPNumber *z);
+
+/* Sets z = x + numerator ÷ denominator */
+void mp_add_fraction(const MPNumber *x, int64_t numerator, int64_t denominator, MPNumber *z);
+
+/* Sets z = x − y */
+void mp_subtract(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z = x × y */
+void mp_multiply(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z = x × y */
+void mp_multiply_integer(const MPNumber *x, int64_t y, MPNumber *z);
+
+/* Sets z = x × numerator ÷ denominator */
+void mp_multiply_fraction(const MPNumber *x, int64_t numerator, int64_t denominator, MPNumber *z);
+
+/* Sets z = x ÷ y */
+void mp_divide(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z = x ÷ y */
+void mp_divide_integer(const MPNumber *x, int64_t y, MPNumber *z);
+
+/* Sets z = 1 ÷ x */
+void mp_reciprocal(const MPNumber *, MPNumber *);
+
+/* Sets z = sgn(x) */
+void mp_sgn(const MPNumber *x, MPNumber *z);
+
+void mp_integer_component(const MPNumber *x, MPNumber *z);
+
+/* Sets z = x mod 1 */
+void mp_fractional_component(const MPNumber *x, MPNumber *z);
+
+/* Sets z = {x} */
+void mp_fractional_part(const MPNumber *x, MPNumber *z);
+
+/* Sets z = ⌊x⌋ */
+void mp_floor(const MPNumber *x, MPNumber *z);
+
+/* Sets z = ⌈x⌉ */
+void mp_ceiling(const MPNumber *x, MPNumber *z);
+
+/* Sets z = [x] */
+void mp_round(const MPNumber *x, MPNumber *z);
+
+/* Sets z = ln x */
+void mp_ln(const MPNumber *x, MPNumber *z);
+
+/* Sets z = log_n x */
+void mp_logarithm(int64_t n, const MPNumber *x, MPNumber *z);
+
+/* Sets z = π */
+void mp_get_pi(MPNumber *z);
+
+/* Sets z = e */
+void mp_get_eulers(MPNumber *z);
+
+/* Sets z = i (√−1) */
+void mp_get_i(MPNumber *z);
+
+/* Sets z = n√x */
+void mp_root(const MPNumber *x, int64_t n, MPNumber *z);
+
+/* Sets z = √x */
+void mp_sqrt(const MPNumber *x, MPNumber *z);
+
+/* Sets z = x! */
+void mp_factorial(const MPNumber *x, MPNumber *z);
+
+/* Sets z = x mod y */
+void mp_modulus_divide(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z = x^y */
+void mp_xpowy(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z = x^y */
+void mp_xpowy_integer(const MPNumber *x, int64_t y, MPNumber *z);
+
+/* Sets z = e^x */
+void mp_epowy(const MPNumber *x, MPNumber *z);
+
+/* Returns a list of all prime factors in x as MPNumbers */
+GList* mp_factorize(const MPNumber *x);
+
+/* Sets z = x */
+void mp_set_from_mp(const MPNumber *x, MPNumber *z);
+
+/* Sets z = x */
+void mp_set_from_float(float x, MPNumber *z);
+
+/* Sets z = x */
+void mp_set_from_double(double x, MPNumber *z);
+
+/* Sets z = x */
+void mp_set_from_integer(int64_t x, MPNumber *z);
+
+/* Sets z = x */
+void mp_set_from_unsigned_integer(uint64_t x, MPNumber *z);
+
+/* Sets z = numerator ÷ denominator */
+void mp_set_from_fraction(int64_t numerator, int64_t denominator, MPNumber *z);
+
+/* Sets z = r(cos theta + i sin theta) */
+void mp_set_from_polar(const MPNumber *r, MPAngleUnit unit, const MPNumber *theta, MPNumber *z);
+
+/* Sets z = x + iy */
+void mp_set_from_complex(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z to be a uniform random number in the range [0, 1] */
+void mp_set_from_random(MPNumber *z);
+
+/* Sets z from a string representation in 'text'.
+ * Returns true on success.
+ */
+bool mp_set_from_string(const char *text, int default_base, MPNumber *z);
+
+/* Returns x as a native single-precision floating point number */
+float mp_cast_to_float(const MPNumber *x);
+
+/* Returns x as a native double-precision floating point number */
+double mp_cast_to_double(const MPNumber *x);
+
+/* Returns x as a native integer */
+int64_t mp_cast_to_int(const MPNumber *x);
+
+/* Returns x as a native unsigned integer */
+uint64_t mp_cast_to_unsigned_int(const MPNumber *x);
+
+/* Converts x to a string representation.
+ * The string is written into 'buffer' which is guaranteed to be at least 'buffer_length' octets in size.
+ * If not enough space is available the string is truncated.
+ * The numbers are written in 'base' (e.g. 10).
+ * If 'trim_zeroes' is non-zero then strip off trailing zeroes.
+ * Fractional components are truncated at 'max_digits' digits.
+ */
+void mp_cast_to_string(const MPNumber *x, int default_base, int base, int max_digits, bool trim_zeroes, char *buffer, int buffer_length);
+
+/* Converts x to a string representation in exponential form.
+ * The string is written into 'buffer' which is guaranteed to be at least 'buffer_length' octets in size.
+ * If not enough space is available the string is truncated.
+ * The numbers are written in 'base' (e.g. 10).
+ * If 'trim_zeroes' is non-zero then strip off trailing zeroes.
+ * Fractional components are truncated at 'max_digits' digits.
+ */
+void mp_cast_to_exponential_string(const MPNumber *x, int default_base, int base, int max_digits, bool trim_zeroes, bool eng_format, char *buffer, int buffer_length);
+
+/* Sets z = sin x */
+void mp_sin(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
+
+/* Sets z = cos x */
+void mp_cos(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
+
+/* Sets z = tan x */
+void mp_tan(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
+
+/* Sets z = sin⁻¹ x */
+void mp_asin(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
+
+/* Sets z = cos⁻¹ x */
+void mp_acos(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
+
+/* Sets z = tan⁻¹ x */
+void mp_atan(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
+
+/* Sets z = sinh x */
+void mp_sinh(const MPNumber *x, MPNumber *z);
+
+/* Sets z = cosh x */
+void mp_cosh(const MPNumber *x, MPNumber *z);
+
+/* Sets z = tanh x */
+void mp_tanh(const MPNumber *x, MPNumber *z);
+
+/* Sets z = sinh⁻¹ x */
+void mp_asinh(const MPNumber *x, MPNumber *z);
+
+/* Sets z = cosh⁻¹ x */
+void mp_acosh(const MPNumber *x, MPNumber *z);
+
+/* Sets z = tanh⁻¹ x */
+void mp_atanh(const MPNumber *x, MPNumber *z);
+
+/* Returns true if x is cannot be represented in a binary word of length 'wordlen' */
+bool mp_is_overflow(const MPNumber *x, int wordlen);
+
+/* Sets z = boolean AND for each bit in x and z */
+void mp_and(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z = boolean OR for each bit in x and z */
+void mp_or(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z = boolean XOR for each bit in x and z */
+void mp_xor(const MPNumber *x, const MPNumber *y, MPNumber *z);
+
+/* Sets z = boolean XNOR for each bit in x and z for word of length 'wordlen' */
+void mp_xnor(const MPNumber *x, const MPNumber *y, int wordlen, MPNumber *z);
+
+/* Sets z = boolean NOT for each bit in x and z for word of length 'wordlen' */
+void mp_not(const MPNumber *x, int wordlen, MPNumber *z);
+
+/* Sets z = x masked to 'wordlen' bits */
+void mp_mask(const MPNumber *x, int wordlen, MPNumber *z);
+
+/* Sets z = x shifted by 'count' bits. Positive shift increases the value, negative decreases */
+void mp_shift(const MPNumber *x, int count, MPNumber *z);
+
+/* Sets z to be the ones complement of x for word of length 'wordlen' */
+void mp_ones_complement(const MPNumber *x, int wordlen, MPNumber *z);
+
+/* Sets z to be the twos complement of x for word of length 'wordlen' */
+void mp_twos_complement(const MPNumber *x, int wordlen, MPNumber *z);
+
+#endif /* MP_H */