summaryrefslogtreecommitdiff
path: root/src/mp-trigonometric.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/mp-trigonometric.c')
-rw-r--r--src/mp-trigonometric.c628
1 files changed, 628 insertions, 0 deletions
diff --git a/src/mp-trigonometric.c b/src/mp-trigonometric.c
new file mode 100644
index 0000000..2ebc676
--- /dev/null
+++ b/src/mp-trigonometric.c
@@ -0,0 +1,628 @@
+/* Copyright (c) 1987-2008 Sun Microsystems, Inc. All Rights Reserved.
+ * Copyright (c) 2008-2009 Robert Ancell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
+ * 02111-1307, USA.
+ */
+
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+#include <libintl.h>
+
+#include "mp.h"
+#include "mp-private.h"
+
+static int
+mp_compare_mp_to_int(const MPNumber *x, int i)
+{
+ MPNumber t;
+ mp_set_from_integer(i, &t);
+ return mp_compare_mp_to_mp(x, &t);
+}
+
+
+/* Convert x to radians */
+void
+convert_to_radians(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ MPNumber t1, t2;
+
+ switch(unit) {
+ default:
+ case MP_RADIANS:
+ mp_set_from_mp(x, z);
+ break;
+
+ case MP_DEGREES:
+ mp_get_pi(&t1);
+ mp_multiply(x, &t1, &t2);
+ mp_divide_integer(&t2, 180, z);
+ break;
+
+ case MP_GRADIANS:
+ mp_get_pi(&t1);
+ mp_multiply(x, &t1, &t2);
+ mp_divide_integer(&t2, 200, z);
+ break;
+ }
+}
+
+
+void
+mp_get_pi(MPNumber *z)
+{
+ mp_set_from_string("3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679", 10, z);
+}
+
+
+void
+convert_from_radians(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ MPNumber t1, t2;
+
+ switch (unit) {
+ default:
+ case MP_RADIANS:
+ mp_set_from_mp(x, z);
+ break;
+
+ case MP_DEGREES:
+ mp_multiply_integer(x, 180, &t2);
+ mp_get_pi(&t1);
+ mp_divide(&t2, &t1, z);
+ break;
+
+ case MP_GRADIANS:
+ mp_multiply_integer(x, 200, &t2);
+ mp_get_pi(&t1);
+ mp_divide(&t2, &t1, z);
+ break;
+ }
+}
+
+
+/* z = sin(x) -1 >= x >= 1, do_sin = 1
+ * z = cos(x) -1 >= x >= 1, do_sin = 0
+ */
+static void
+mpsin1(const MPNumber *x, MPNumber *z, int do_sin)
+{
+ int i, b2;
+ MPNumber t1, t2;
+
+ /* sin(0) = 0, cos(0) = 1 */
+ if (mp_is_zero(x)) {
+ if (do_sin == 0)
+ mp_set_from_integer(1, z);
+ else
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ mp_multiply(x, x, &t2);
+ if (mp_compare_mp_to_int(&t2, 1) > 0) {
+ mperr("*** ABS(X) > 1 IN CALL TO MPSIN1 ***");
+ }
+
+ if (do_sin == 0) {
+ mp_set_from_integer(1, &t1);
+ mp_set_from_integer(0, z);
+ i = 1;
+ } else {
+ mp_set_from_mp(x, &t1);
+ mp_set_from_mp(&t1, z);
+ i = 2;
+ }
+
+ /* Taylor series */
+ /* POWER SERIES LOOP. REDUCE T IF POSSIBLE */
+ b2 = 2 * max(MP_BASE, 64);
+ do {
+ if (MP_T + t1.exponent <= 0)
+ break;
+
+ /* IF I*(I+1) IS NOT REPRESENTABLE AS AN INTEGER, THE FOLLOWING
+ * DIVISION BY I*(I+1) HAS TO BE SPLIT UP.
+ */
+ mp_multiply(&t2, &t1, &t1);
+ if (i > b2) {
+ mp_divide_integer(&t1, -i, &t1);
+ mp_divide_integer(&t1, i + 1, &t1);
+ } else {
+ mp_divide_integer(&t1, -i * (i + 1), &t1);
+ }
+ mp_add(&t1, z, z);
+
+ i += 2;
+ } while (t1.sign != 0);
+
+ if (do_sin == 0)
+ mp_add_integer(z, 1, z);
+}
+
+
+static void
+mp_sin_real(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ int xs;
+ MPNumber x_radians;
+
+ /* sin(0) = 0 */
+ if (mp_is_zero(x)) {
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ convert_to_radians(x, unit, &x_radians);
+
+ xs = x_radians.sign;
+ mp_abs(&x_radians, &x_radians);
+
+ /* USE MPSIN1 IF ABS(X) <= 1 */
+ if (mp_compare_mp_to_int(&x_radians, 1) <= 0) {
+ mpsin1(&x_radians, z, 1);
+ }
+ /* FIND ABS(X) MODULO 2PI */
+ else {
+ mp_get_pi(z);
+ mp_divide_integer(z, 4, z);
+ mp_divide(&x_radians, z, &x_radians);
+ mp_divide_integer(&x_radians, 8, &x_radians);
+ mp_fractional_component(&x_radians, &x_radians);
+
+ /* SUBTRACT 1/2, SAVE SIGN AND TAKE ABS */
+ mp_add_fraction(&x_radians, -1, 2, &x_radians);
+ xs = -xs * x_radians.sign;
+ if (xs == 0) {
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ x_radians.sign = 1;
+ mp_multiply_integer(&x_radians, 4, &x_radians);
+
+ /* IF NOT LESS THAN 1, SUBTRACT FROM 2 */
+ if (x_radians.exponent > 0)
+ mp_add_integer(&x_radians, -2, &x_radians);
+
+ if (mp_is_zero(&x_radians)) {
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ x_radians.sign = 1;
+ mp_multiply_integer(&x_radians, 2, &x_radians);
+
+ /* NOW REDUCED TO FIRST QUADRANT, IF LESS THAN PI/4 USE
+ * POWER SERIES, ELSE COMPUTE COS OF COMPLEMENT
+ */
+ if (x_radians.exponent > 0) {
+ mp_add_integer(&x_radians, -2, &x_radians);
+ mp_multiply(&x_radians, z, &x_radians);
+ mpsin1(&x_radians, z, 0);
+ } else {
+ mp_multiply(&x_radians, z, &x_radians);
+ mpsin1(&x_radians, z, 1);
+ }
+ }
+
+ z->sign = xs;
+}
+
+
+static void
+mp_cos_real(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ /* cos(0) = 1 */
+ if (mp_is_zero(x)) {
+ mp_set_from_integer(1, z);
+ return;
+ }
+
+ convert_to_radians(x, unit, z);
+
+ /* Use power series if |x| <= 1 */
+ mp_abs(z, z);
+ if (mp_compare_mp_to_int(z, 1) <= 0) {
+ mpsin1(z, z, 0);
+ } else {
+ MPNumber t;
+
+ /* cos(x) = sin(π/2 - |x|) */
+ mp_get_pi(&t);
+ mp_divide_integer(&t, 2, &t);
+ mp_subtract(&t, z, z);
+ mp_sin(z, MP_RADIANS, z);
+ }
+}
+
+
+void
+mp_sin(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ if (mp_is_complex(x)) {
+ MPNumber x_real, x_im, z_real, z_im, t;
+
+ mp_real_component(x, &x_real);
+ mp_imaginary_component(x, &x_im);
+
+ mp_sin_real(&x_real, unit, &z_real);
+ mp_cosh(&x_im, &t);
+ mp_multiply(&z_real, &t, &z_real);
+
+ mp_cos_real(&x_real, unit, &z_im);
+ mp_sinh(&x_im, &t);
+ mp_multiply(&z_im, &t, &z_im);
+
+ mp_set_from_complex(&z_real, &z_im, z);
+ }
+ else
+ mp_sin_real(x, unit, z);
+}
+
+
+void
+mp_cos(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ if (mp_is_complex(x)) {
+ MPNumber x_real, x_im, z_real, z_im, t;
+
+ mp_real_component(x, &x_real);
+ mp_imaginary_component(x, &x_im);
+
+ mp_cos_real(&x_real, unit, &z_real);
+ mp_cosh(&x_im, &t);
+ mp_multiply(&z_real, &t, &z_real);
+
+ mp_sin_real(&x_real, unit, &z_im);
+ mp_sinh(&x_im, &t);
+ mp_multiply(&z_im, &t, &z_im);
+ mp_invert_sign(&z_im, &z_im);
+
+ mp_set_from_complex(&z_real, &z_im, z);
+ }
+ else
+ mp_cos_real(x, unit, z);
+}
+
+
+void
+mp_tan(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ MPNumber cos_x, sin_x;
+
+ /* Check for undefined values */
+ mp_cos(x, unit, &cos_x);
+ if (mp_is_zero(&cos_x)) {
+ /* Translators: Error displayed when tangent value is undefined */
+ mperr(_("Tangent is undefined for angles that are multiples of π (180°) from π∕2 (90°)"));
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ /* tan(x) = sin(x) / cos(x) */
+ mp_sin(x, unit, &sin_x);
+ mp_divide(&sin_x, &cos_x, z);
+}
+
+
+void
+mp_asin(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ MPNumber t1, t2;
+
+ /* asin⁻¹(0) = 0 */
+ if (mp_is_zero(x)) {
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ /* sin⁻¹(x) = tan⁻¹(x / √(1 - x²)), |x| < 1 */
+ if (x->exponent <= 0) {
+ mp_set_from_integer(1, &t1);
+ mp_set_from_mp(&t1, &t2);
+ mp_subtract(&t1, x, &t1);
+ mp_add(&t2, x, &t2);
+ mp_multiply(&t1, &t2, &t2);
+ mp_root(&t2, -2, &t2);
+ mp_multiply(x, &t2, z);
+ mp_atan(z, unit, z);
+ return;
+ }
+
+ /* sin⁻¹(1) = π/2, sin⁻¹(-1) = -π/2 */
+ mp_set_from_integer(x->sign, &t2);
+ if (mp_is_equal(x, &t2)) {
+ mp_get_pi(z);
+ mp_divide_integer(z, 2 * t2.sign, z);
+ convert_from_radians(z, unit, z);
+ return;
+ }
+
+ /* Translators: Error displayed when inverse sine value is undefined */
+ mperr(_("Inverse sine is undefined for values outside [-1, 1]"));
+ mp_set_from_integer(0, z);
+}
+
+
+void
+mp_acos(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ MPNumber t1, t2;
+ MPNumber MPn1, pi, MPy;
+
+ mp_get_pi(&pi);
+ mp_set_from_integer(1, &t1);
+ mp_set_from_integer(-1, &MPn1);
+
+ if (mp_is_greater_than(x, &t1) || mp_is_less_than(x, &MPn1)) {
+ /* Translators: Error displayed when inverse cosine value is undefined */
+ mperr(_("Inverse cosine is undefined for values outside [-1, 1]"));
+ mp_set_from_integer(0, z);
+ } else if (mp_is_zero(x)) {
+ mp_divide_integer(&pi, 2, z);
+ } else if (mp_is_equal(x, &t1)) {
+ mp_set_from_integer(0, z);
+ } else if (mp_is_equal(x, &MPn1)) {
+ mp_set_from_mp(&pi, z);
+ } else {
+ /* cos⁻¹(x) = tan⁻¹(√(1 - x²) / x) */
+ mp_multiply(x, x, &t2);
+ mp_subtract(&t1, &t2, &t2);
+ mp_sqrt(&t2, &t2);
+ mp_divide(&t2, x, &t2);
+ mp_atan(&t2, MP_RADIANS, &MPy);
+ if (x->sign > 0) {
+ mp_set_from_mp(&MPy, z);
+ } else {
+ mp_add(&MPy, &pi, z);
+ }
+ }
+
+ convert_from_radians(z, unit, z);
+}
+
+
+void
+mp_atan(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
+{
+ int i, q;
+ float rx = 0.0;
+ MPNumber t1, t2;
+
+ if (mp_is_zero(x)) {
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ mp_set_from_mp(x, &t2);
+ if (abs(x->exponent) <= 2)
+ rx = mp_cast_to_float(x);
+
+ /* REDUCE ARGUMENT IF NECESSARY BEFORE USING SERIES */
+ q = 1;
+ while (t2.exponent >= 0)
+ {
+ if (t2.exponent == 0 && 2 * (t2.fraction[0] + 1) <= MP_BASE)
+ break;
+
+ q *= 2;
+
+ /* t = t / (√(t² + 1) + 1) */
+ mp_multiply(&t2, &t2, z);
+ mp_add_integer(z, 1, z);
+ mp_sqrt(z, z);
+ mp_add_integer(z, 1, z);
+ mp_divide(&t2, z, &t2);
+ }
+
+ /* USE POWER SERIES NOW ARGUMENT IN (-0.5, 0.5) */
+ mp_set_from_mp(&t2, z);
+ mp_multiply(&t2, &t2, &t1);
+
+ /* SERIES LOOP. REDUCE T IF POSSIBLE. */
+ for (i = 1; ; i += 2) {
+ if (MP_T + 2 + t2.exponent <= 1)
+ break;
+
+ mp_multiply(&t2, &t1, &t2);
+ mp_multiply_fraction(&t2, -i, i + 2, &t2);
+
+ mp_add(z, &t2, z);
+ if (mp_is_zero(&t2))
+ break;
+ }
+
+ /* CORRECT FOR ARGUMENT REDUCTION */
+ mp_multiply_integer(z, q, z);
+
+ /* CHECK THAT RELATIVE ERROR LESS THAN 0.01 UNLESS EXPONENT
+ * OF X IS LARGE (WHEN ATAN MIGHT NOT WORK)
+ */
+ if (abs(x->exponent) <= 2) {
+ float ry = mp_cast_to_float(z);
+ /* THE FOLLOWING MESSAGE MAY INDICATE THAT B**(T-1) IS TOO SMALL. */
+ if (fabs(ry - atan(rx)) >= fabs(ry) * 0.01)
+ mperr("*** ERROR OCCURRED IN MP_ATAN, RESULT INCORRECT ***");
+ }
+
+ convert_from_radians(z, unit, z);
+}
+
+
+void
+mp_sinh(const MPNumber *x, MPNumber *z)
+{
+ MPNumber abs_x;
+
+ /* sinh(0) = 0 */
+ if (mp_is_zero(x)) {
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ /* WORK WITH ABS(X) */
+ mp_abs(x, &abs_x);
+
+ /* If |x| < 1 USE MPEXP TO AVOID CANCELLATION, otherwise IF TOO LARGE MP_EPOWY GIVES ERROR MESSAGE */
+ if (abs_x.exponent <= 0) {
+ MPNumber exp_x, a, b;
+
+ /* ((e^|x| + 1) * (e^|x| - 1)) / e^|x| */
+ // FIXME: Solves to e^|x| - e^-|x|, why not lower branch always? */
+ mp_epowy(&abs_x, &exp_x);
+ mp_add_integer(&exp_x, 1, &a);
+ mp_add_integer(&exp_x, -1, &b);
+ mp_multiply(&a, &b, z);
+ mp_divide(z, &exp_x, z);
+ }
+ else {
+ MPNumber exp_x;
+
+ /* e^|x| - e^-|x| */
+ mp_epowy(&abs_x, &exp_x);
+ mp_reciprocal(&exp_x, z);
+ mp_subtract(&exp_x, z, z);
+ }
+
+ /* DIVIDE BY TWO AND RESTORE SIGN */
+ mp_divide_integer(z, 2, z);
+ mp_multiply_integer(z, x->sign, z);
+}
+
+
+void
+mp_cosh(const MPNumber *x, MPNumber *z)
+{
+ MPNumber t;
+
+ /* cosh(0) = 1 */
+ if (mp_is_zero(x)) {
+ mp_set_from_integer(1, z);
+ return;
+ }
+
+ /* cosh(x) = (e^x + e^-x) / 2 */
+ mp_abs(x, &t);
+ mp_epowy(&t, &t);
+ mp_reciprocal(&t, z);
+ mp_add(&t, z, z);
+ mp_divide_integer(z, 2, z);
+}
+
+
+void
+mp_tanh(const MPNumber *x, MPNumber *z)
+{
+ float r__1;
+ MPNumber t;
+
+ /* tanh(0) = 0 */
+ if (mp_is_zero(x)) {
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ mp_abs(x, &t);
+
+ /* SEE IF ABS(X) SO LARGE THAT RESULT IS +-1 */
+ r__1 = (float) MP_T * 0.5 * log((float) MP_BASE);
+ mp_set_from_float(r__1, z);
+ if (mp_compare_mp_to_mp(&t, z) > 0) {
+ mp_set_from_integer(x->sign, z);
+ return;
+ }
+
+ /* If |x| >= 1/2 use ?, otherwise use ? to avoid cancellation */
+ /* |tanh(x)| = (e^|2x| - 1) / (e^|2x| + 1) */
+ mp_multiply_integer(&t, 2, &t);
+ if (t.exponent > 0) {
+ mp_epowy(&t, &t);
+ mp_add_integer(&t, -1, z);
+ mp_add_integer(&t, 1, &t);
+ mp_divide(z, &t, z);
+ } else {
+ mp_epowy(&t, &t);
+ mp_add_integer(&t, 1, z);
+ mp_divide(&t, z, z);
+ }
+
+ /* Restore sign */
+ z->sign = x->sign * z->sign;
+}
+
+
+void
+mp_asinh(const MPNumber *x, MPNumber *z)
+{
+ MPNumber t;
+
+ /* sinh⁻¹(x) = ln(x + √(x² + 1)) */
+ mp_multiply(x, x, &t);
+ mp_add_integer(&t, 1, &t);
+ mp_sqrt(&t, &t);
+ mp_add(x, &t, &t);
+ mp_ln(&t, z);
+}
+
+
+void
+mp_acosh(const MPNumber *x, MPNumber *z)
+{
+ MPNumber t;
+
+ /* Check x >= 1 */
+ mp_set_from_integer(1, &t);
+ if (mp_is_less_than(x, &t)) {
+ /* Translators: Error displayed when inverse hyperbolic cosine value is undefined */
+ mperr(_("Inverse hyperbolic cosine is undefined for values less than or equal to one"));
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ /* cosh⁻¹(x) = ln(x + √(x² - 1)) */
+ mp_multiply(x, x, &t);
+ mp_add_integer(&t, -1, &t);
+ mp_sqrt(&t, &t);
+ mp_add(x, &t, &t);
+ mp_ln(&t, z);
+}
+
+
+void
+mp_atanh(const MPNumber *x, MPNumber *z)
+{
+ MPNumber one, minus_one, n, d;
+
+ /* Check -1 <= x <= 1 */
+ mp_set_from_integer(1, &one);
+ mp_set_from_integer(-1, &minus_one);
+ if (mp_is_greater_equal(x, &one) || mp_is_less_equal(x, &minus_one)) {
+ /* Translators: Error displayed when inverse hyperbolic tangent value is undefined */
+ mperr(_("Inverse hyperbolic tangent is undefined for values outside [-1, 1]"));
+ mp_set_from_integer(0, z);
+ return;
+ }
+
+ /* atanh(x) = 0.5 * ln((1 + x) / (1 - x)) */
+ mp_add_integer(x, 1, &n);
+ mp_set_from_mp(x, &d);
+ mp_invert_sign(&d, &d);
+ mp_add_integer(&d, 1, &d);
+ mp_divide(&n, &d, z);
+ mp_ln(z, z);
+ mp_divide_integer(z, 2, z);
+}