1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
/*
* Copyright (C) 1987-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright (C) 2008-2011 Robert Ancell.
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, either version 2 of the License, or (at your option) any later
* version. See http://www.gnu.org/copyleft/gpl.html the full text of the
* license.
*/
/* This maths library is based on the MP multi-precision floating-point
* arithmetic package originally written in FORTRAN by Richard Brent,
* Computer Centre, Australian National University in the 1970's.
*
* It has been converted from FORTRAN into C using the freely available
* f2c translator, available via netlib on research.att.com.
*
* The subsequently converted C code has then been tidied up, mainly to
* remove any dependencies on the libI77 and libF77 support libraries.
*
* FOR A GENERAL DESCRIPTION OF THE PHILOSOPHY AND DESIGN OF MP,
* SEE - R. P. BRENT, A FORTRAN MULTIPLE-PRECISION ARITHMETIC
* PACKAGE, ACM TRANS. MATH. SOFTWARE 4 (MARCH 1978), 57-70.
* SOME ADDITIONAL DETAILS ARE GIVEN IN THE SAME ISSUE, 71-81.
* FOR DETAILS OF THE IMPLEMENTATION, CALLING SEQUENCES ETC. SEE
* THE MP USERS GUIDE.
*/
#ifndef MP_H
#define MP_H
#include <stdbool.h>
#include <stdint.h>
#include <glib.h>
#include <glib/gi18n.h>
#include <mpfr.h>
#include <mpc.h>
/* If we're not using GNU C, elide __attribute__ */
#ifndef __GNUC__
# define __attribute__(x) /*NOTHING*/
#endif
/* Precision of mpfr_t and mpc_t type objects */
#define PRECISION 1000
typedef struct
{
mpc_t num;
} MPNumber;
typedef enum
{
MP_RADIANS,
MP_DEGREES,
MP_GRADIANS
} MPAngleUnit;
/* Returns error string or NULL if no error */
// FIXME: Global variable
const char *mp_get_error(void);
/* Clear any current error */
void mp_clear_error(void);
void mperr(const char *format, ...) __attribute__((format(printf, 1, 2)));
/* Returns initialized MPNumber object */
MPNumber mp_new(void);
MPNumber* mp_new_ptr(void);
void mp_clear(MPNumber *z);
void mp_free(MPNumber *z);
/* Returns:
* 0 if x == y
* <0 if x < y
* >0 if x > y
*/
int mp_compare(const MPNumber *x, const MPNumber *y);
/* Return true if the value is x == 0 */
bool mp_is_zero(const MPNumber *x);
/* Return true if x < 0 */
bool mp_is_negative(const MPNumber *x);
/* Return true if x is integer */
bool mp_is_integer(const MPNumber *x);
/* Return true if x is a positive integer */
bool mp_is_positive_integer(const MPNumber *x);
/* Return true if x is a natural number (an integer ≥ 0) */
bool mp_is_natural(const MPNumber *x);
/* Return true if x has an imaginary component */
bool mp_is_complex(const MPNumber *x);
/* Return true if x == y */
bool mp_is_equal(const MPNumber *x, const MPNumber *y);
/* Return true if x ≥ y */
bool mp_is_greater_equal(const MPNumber *x, const MPNumber *y);
/* Return true if x > y */
bool mp_is_greater_than(const MPNumber *x, const MPNumber *y);
/* Return true if x ≤ y */
bool mp_is_less_equal(const MPNumber *x, const MPNumber *y);
/* Return true if x < y */
bool mp_is_less_than(const MPNumber *x, const MPNumber *y);
/* Sets z = |x| */
void mp_abs(const MPNumber *x, MPNumber *z);
/* Sets z = Arg(x) */
void mp_arg(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
/* Sets z = ‾̅x */
void mp_conjugate(const MPNumber *x, MPNumber *z);
/* Sets z = Re(x) */
void mp_real_component(const MPNumber *x, MPNumber *z);
/* Sets z = Im(x) */
void mp_imaginary_component(const MPNumber *x, MPNumber *z);
/* Sets z = −x */
void mp_invert_sign(const MPNumber *x, MPNumber *z);
/* Sets z = x + y */
void mp_add(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z = x + y */
void mp_add_integer(const MPNumber *x, int64_t y, MPNumber *z);
/* Sets z = x − y */
void mp_subtract(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z = x × y */
void mp_multiply(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z = x × y */
void mp_multiply_integer(const MPNumber *x, int64_t y, MPNumber *z);
/* Sets z = x ÷ y */
void mp_divide(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z = x ÷ y */
void mp_divide_integer(const MPNumber *x, int64_t y, MPNumber *z);
/* Sets z = 1 ÷ x */
void mp_reciprocal(const MPNumber *, MPNumber *);
/* Sets z = sgn(x) */
void mp_sgn(const MPNumber *x, MPNumber *z);
void mp_integer_component(const MPNumber *x, MPNumber *z);
/* Sets z = x mod 1 */
void mp_fractional_component(const MPNumber *x, MPNumber *z);
/* Sets z = {x} */
void mp_fractional_part(const MPNumber *x, MPNumber *z);
/* Sets z = ⌊x⌋ */
void mp_floor(const MPNumber *x, MPNumber *z);
/* Sets z = ⌈x⌉ */
void mp_ceiling(const MPNumber *x, MPNumber *z);
/* Sets z = [x] */
void mp_round(const MPNumber *x, MPNumber *z);
/* Sets z = ln x */
void mp_ln(const MPNumber *x, MPNumber *z);
/* Sets z = log_n x */
void mp_logarithm(int64_t n, const MPNumber *x, MPNumber *z);
/* Sets z = π */
void mp_get_pi(MPNumber *z);
/* Sets z = e */
void mp_get_eulers(MPNumber *z);
/* Sets z = i (√−1) */
void mp_get_i(MPNumber *z);
/* Sets z = n√x */
void mp_root(const MPNumber *x, int64_t n, MPNumber *z);
/* Sets z = √x */
void mp_sqrt(const MPNumber *x, MPNumber *z);
/* Sets z = x! */
void mp_factorial(const MPNumber *x, MPNumber *z);
/* Sets z = x mod y */
void mp_modulus_divide(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z = x^y */
void mp_xpowy(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z = x^y */
void mp_xpowy_integer(const MPNumber *x, int64_t y, MPNumber *z);
/* Sets z = e^x */
void mp_epowy(const MPNumber *x, MPNumber *z);
/* Returns a list of all prime factors in x as MPNumbers */
GList* mp_factorize(const MPNumber *x);
GList* mp_factorize_unit64 (uint64_t n);
/* Sets z = x */
void mp_set_from_mp(const MPNumber *x, MPNumber *z);
/* Sets z = x */
void mp_set_from_float(float x, MPNumber *z);
/* Sets z = x */
void mp_set_from_double(double x, MPNumber *z);
/* Sets z = x */
void mp_set_from_integer(int64_t x, MPNumber *z);
/* Sets z = x */
void mp_set_from_unsigned_integer(uint64_t x, MPNumber *z);
/* Sets z = numerator ÷ denominator */
void mp_set_from_fraction(int64_t numerator, int64_t denominator, MPNumber *z);
/* Sets z = r(cos theta + i sin theta) */
void mp_set_from_polar(const MPNumber *r, MPAngleUnit unit, const MPNumber *theta, MPNumber *z);
/* Sets z = x + iy */
void mp_set_from_complex(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z to be a uniform random number in the range [0, 1] */
void mp_set_from_random(MPNumber *z);
/* Sets z from a string representation in 'text'.
* Returns true on success.
*/
bool mp_set_from_string(const char *text, int default_base, MPNumber *z);
/* Returns x as a native single-precision floating point number */
float mp_to_float(const MPNumber *x);
/* Returns x as a native double-precision floating point number */
double mp_to_double(const MPNumber *x);
/* Returns x as a native integer */
int64_t mp_to_integer(const MPNumber *x);
/* Returns x as a native unsigned integer */
uint64_t mp_to_unsigned_integer(const MPNumber *x);
/* Sets z = sin x */
void mp_sin(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
/* Sets z = cos x */
void mp_cos(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
/* Sets z = tan x */
void mp_tan(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
/* Sets z = sin⁻¹ x */
void mp_asin(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
/* Sets z = cos⁻¹ x */
void mp_acos(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
/* Sets z = tan⁻¹ x */
void mp_atan(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
/* Sets z = sinh x */
void mp_sinh(const MPNumber *x, MPNumber *z);
/* Sets z = cosh x */
void mp_cosh(const MPNumber *x, MPNumber *z);
/* Sets z = tanh x */
void mp_tanh(const MPNumber *x, MPNumber *z);
/* Sets z = sinh⁻¹ x */
void mp_asinh(const MPNumber *x, MPNumber *z);
/* Sets z = cosh⁻¹ x */
void mp_acosh(const MPNumber *x, MPNumber *z);
/* Sets z = tanh⁻¹ x */
void mp_atanh(const MPNumber *x, MPNumber *z);
/* Sets z to the value of the error function of x */
void mp_erf(const MPNumber *x, MPNumber *z);
/* Sets z to the value of the Riemann Zeta function of x */
void mp_zeta(const MPNumber *x, MPNumber *z);
/* Returns true if x is cannot be represented in a binary word of length 'wordlen' */
bool mp_is_overflow(const MPNumber *x, int wordlen);
/* Sets z = boolean AND for each bit in x and z */
void mp_and(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z = boolean OR for each bit in x and z */
void mp_or(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z = boolean XOR for each bit in x and z */
void mp_xor(const MPNumber *x, const MPNumber *y, MPNumber *z);
/* Sets z = boolean XNOR for each bit in x and z for word of length 'wordlen' */
void mp_xnor(const MPNumber *x, const MPNumber *y, int wordlen, MPNumber *z);
/* Sets z = boolean NOT for each bit in x and z for word of length 'wordlen' */
void mp_not(const MPNumber *x, int wordlen, MPNumber *z);
/* Sets z = x shifted by 'count' bits. Positive shift increases the value, negative decreases */
void mp_shift(const MPNumber *x, int count, MPNumber *z);
/* Sets z to be the ones complement of x for word of length 'wordlen' */
void mp_ones_complement(const MPNumber *x, int wordlen, MPNumber *z);
/* Sets z to be the twos complement of x for word of length 'wordlen' */
void mp_twos_complement(const MPNumber *x, int wordlen, MPNumber *z);
void convert_to_radians(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
void convert_from_radians(const MPNumber *x, MPAngleUnit unit, MPNumber *z);
#endif /* MP_H */
|