1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
/*
* Copyright (C) 2007 Red Hat, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* Authors:
* Jonathan Blandford <jrb@redhat.com>
* Matthias Clasen <mclasen@redhat.com>
*/
#include <time.h>
#include <gtk/gtk.h>
#include <math.h>
#include "clock-sunpos.h"
/* Calculated with the methods and figures from "Practical Astronomy With Your
* Calculator, version 3" by Peter Duffet-Smith.
*/
/* Table 6. Details of the Sun's apparent orbit at epoch 1990.0 */
#define EPOCH 2447891.5 /* days */ /* epoch 1990 */
#define UNIX_EPOCH 2440586.5 /* days */ /* epoch 1970 */
#define EPSILON_G 279.403303 /* degrees */ /* ecliptic longitude at epoch 1990.0 */
#define MU_G 282.768422 /* degrees */ /* ecliptic longitude at perigee */
#define ECCENTRICITY 0.016713 /* eccentricity of orbit */
#define R_0 149598500 /* km */ /* semi-major axis */
#define THETA_0 0.533128 /* degrees */ /* angular diameter at r = r_0 */
#define MEAN_OBLIQUITY 23.440592 /* degrees */ /* mean obliquity of earth's axis at epoch 1990.0 */
#define NORMALIZE(x) \
while (x>360) x-=360; while (x<0) x+= 360;
#define DEG_TO_RADS(x) \
(x * G_PI/180.0)
#define RADS_TO_DEG(x) \
(x * 180.0/G_PI)
/* Calculate number of days since 4713BC.
*/
static gdouble
unix_time_to_julian_date (gint unix_time)
{
return UNIX_EPOCH + (double) unix_time / (60 * 60 * 24);
}
/* Finds an iterative solution for [ E - e sin (E) = M ] for values of e less
than 0.1. Page 90 */
#define ERROR_ACCURACY 1e-6 /* radians */
static gdouble
solve_keplers_equation (gdouble e,
gdouble M)
{
gdouble d, E;
/* start with an initial estimate */
E = M;
d = E - e * sin (E) - M;
while (ABS (d) > ERROR_ACCURACY)
{
E = E - (d / (1 - e * cos (E)));
d = E - e * sin (E) - M;
}
return E;
}
/* convert the ecliptic longitude to right ascension and declination. Section 27. */
static void
ecliptic_to_equatorial (gdouble lambda,
gdouble beta,
gdouble *ra,
gdouble *dec)
{
gdouble cos_mo;
gdouble sin_mo;
g_assert (ra != NULL);
g_assert (dec != NULL);
sin_mo = sin (DEG_TO_RADS (MEAN_OBLIQUITY));
cos_mo = cos (DEG_TO_RADS (MEAN_OBLIQUITY));
*ra = atan2 (sin (lambda) * cos_mo - tan (beta) * sin_mo, cos (lambda));
*dec = asin (sin (beta) * cos_mo + cos (beta) * sin_mo * sin (lambda));
}
/* calculate GST. Section 12 */
static gdouble
greenwich_sidereal_time (gdouble unix_time)
{
gdouble u, JD, T, T0, UT;
u = fmod (unix_time, 24 * 60 * 60);
JD = unix_time_to_julian_date (unix_time - u);
T = (JD - 2451545) / 36525;
T0 = 6.697374558 + (2400.051336 * T) + (0.000025862 * T * T);
T0 = fmod (T0, 24);
UT = u / (60 * 60);
T0 = T0 + UT * 1.002737909;
T0 = fmod (T0, 24);
return T0;
}
/* Calculate the position of the sun at a given time. pages 89-91 */
void
sun_position (time_t unix_time, gdouble *lat, gdouble *lon)
{
gdouble jd, D, N, M, E, x, v, lambda;
gdouble ra, dec;
jd = unix_time_to_julian_date (unix_time);
/* Calculate number of days since the epoch */
D = jd - EPOCH;
N = D*360/365.242191;
/* normalize to 0 - 360 degrees */
NORMALIZE (N);
/* Step 4: */
M = N + EPSILON_G - MU_G;
NORMALIZE (M);
/* Step 5: convert to radians */
M = DEG_TO_RADS (M);
/* Step 6: */
E = solve_keplers_equation (ECCENTRICITY, M);
/* Step 7: */
x = sqrt ((1 + ECCENTRICITY)/(1 - ECCENTRICITY)) * tan (E/2);
/* Step 8, 9 */
v = 2 * RADS_TO_DEG (atan (x));
NORMALIZE (v);
/* Step 10 */
lambda = v + MU_G;
NORMALIZE (lambda);
/* convert the ecliptic longitude to right ascension and declination */
ecliptic_to_equatorial (DEG_TO_RADS (lambda), 0.0, &ra, &dec);
ra = ra - (G_PI/12) * greenwich_sidereal_time (unix_time);
ra = RADS_TO_DEG (ra);
dec = RADS_TO_DEG (dec);
NORMALIZE (ra);
NORMALIZE (dec);
*lat = dec;
*lon = ra;
}
#if 0
int
main (int argc, char *argv[])
{
gint i;
gint now;
GTimeVal timeval;
gdouble lat, lon;
gtk_init (&argc, &argv);
g_get_current_time (&timeval);
now = timeval.tv_sec;
for (i = 0; i < now; i += 15 * 60)
{
sun_position (i, &lat, &lon);
g_print ("%d: %f %f\n", lat, lon);
}
return 0;
}
#endif
|